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ABSTRACT 
We describe a novel mathematical approach to deriving and solving covolume models of the incompressible 
2-D Navier-Stokes flow equations. The approach integrates three technical components into a single 
modelling algorithm: 1. Automatic Grid Generation. An algorithm is described and used to automatically 
discretize the flow domain into a Delaunay triangulation and a dual Voronoi polygonal tessellation. 2. 
Covolume Finite Difference Equation Generation. Three covolume discretizations of the Navier-Stokes 
equations are presented. The first scheme conserves mass over triangular control volumes, the second 
scheme over polygonal control volumes and the third scheme conserves mass over both. Simple consistent 
finite difference equations are derived in terms of the primitive variables of velocity and pressure. 3. Dual 
Variable Reduction. A network theoretic technique is used to transform each of the finite difference systems 
into equivalent systems which are considerably smaller than the original primitive finite difference system. 

KEY WORDS Incompressible flow problem Dual tessellations Covolume discretization 

INTRODUCTION 

One of the oldest methods for numerically approximating boundary value problems is that of 
integrating the defining differential equations over control volumes associated with structured 
or unstructured decompositions of the spatial domain. For example, nearly 40 years ago, 
MacNeal12 derived finite difference models for elliptic problems (electric potential problems) by 
integrating the continuum equations over Delaunay triangles and dual Voronoi tiles. Interestingly, 
rather than solve these equations on a digital computer, he used this approach to calculate 
ohmic resistance values for use in an analog computer composed of a simple linear electric 
circuit. Since then, a variety of terms have been coined to signify this approach to discretization 
of boundary value problems2,13,44 including the complementary volume or covolume method10,11. 
Discretizations of fluid flow problems based on networks using dual unstructured partitions of 
the flow domain were introduced by Porsching16 and Chou6. 

A new covolume discretization approach to modelling two-dimensional incompressible 
Navier-Stokes flow equations was investigated10,11,13,14. That approach produced finite 
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difference equations by spatially integrating the continuity equation over each triangle in a 
Delaunay triangulation of the flow domain, applying Green's theorem to replace area integrals 
with boundary line integrals, and finally approximating each boundary line integral by an 
expression involving scalar velocity components normal to the midpoints of triangle sides [see 
Figure 1 (scheme 1)]. 

The scheme also made use of spatial integrations over dual Voronoi polygons to generate 
finite difference discretizations of the momentum equations involving the same scalar velocity 
components as well as unknown pressure variables positioned at triangle circumcentres. As a 
result of this approach, the vector valued transient Navier-Stokes equations were replaced by 
a continuous time, discrete space finite difference approximation in terms of pressures at triangle 
circumcentres and scalar velocity components in the direction normal to the midpoint of each 
triangle side. 

Collectively, the scalar velocity components and pressure variables are called primitive variables 
and for a Delaunay triangulation involving Nv triangle vertices, the continuum flow equations 
were approximated by 0(5Nv) differential/algebraic equations in a like number of unknowns. 
Also described10,11 was a dual variable approach based on elementary network theory whereby 
the original system of 0(5Nv) primitive variables is transformed into an equivalent system of 
only 0(Nv) ordinary differential equations. A pivotal element in the approach10,11 is the 
approximation of tangential components of flow along the sides of a triangular cell as a linear 
combination of the normal components of flow. It is this approximation that permits the 
replacement of the vector velocity field in the Navier-Stokes equations by a scalar normal 
velocity field. 

An alternative approach to that described10,11,13,14 is to reverse the roles of the Delaunay 
triangles and the Voronoi polygons when deriving covolume approximations to the flow 
equations. In this second scheme, mass is conserved by integrating the continuity equations over 
each Voronoi polygon in the dual Voronoi tessellation. Green's theorem is applied to reduce 
area integrals to line integrals over polygonal boundaries and then line integrals are approximated 
by an expression involving scalar velocity components that are normal to the midpoints of 
polygonal edges [see Figure 1 (Scheme 2)]. Because of the mutual orthogonality of the Delaunay 
and Voronoi constructs, these scalar velocities are both normal to polygon edges and tangential 
to triangle sides. In this scheme we make use of spatial integrations over the Delaunay triangles 
to derive finite difference discretizations of the momentum equations involving the same velocity 
components normal to sides of polygons as well as unknown pressure variables positioned now 
at triangle vertices. For a triangulation of Nv points, this second approach produces an 
approximation to the Navier-Stokes equations involving 0(4NV) differential/algebraic 
equations. We can also use results from network theory to transform this primitive system of 
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0(4Nv) equations into an entirely equivalent system of 0(2NV) ordinary differential equations. 
As before, the dual variables can be used to recover the original primitive normal velocity and 
pressure variables. Key to this approach is the ability to construct an approximation of tangential 
components of flow along the sides of polygonal flow cells by appropriate combinations of scalar 
normal flow components. 

A third approach, and the one emphasized here, is to combine the two covolume approaches 
outlined above to derive and solve covolume models of the transient incompressible flow 
equations. In this third scheme, components of velocity normal and tangential to triangle sides 
(and hence normal to polygonal sides) are treated as independent variables, thereby coupling 
the equations resulting from the first and second schemes [see Figure 1 (Scheme 3)]. For a 
Delaunay/Voronoi tessellation of Nv points, this approach generates a system of 0(9NV) 
differential/algebraic equations in terms of 0(9NV) primitive variables (tangential and normal 
flows at midpoints of triangle sides and pressure variables located at triangle vertices and triangle 
circumcentres). Combining these results derived from network theory applied to the two 
companion approaches, the original system of 0(9NV) equations is transformed into an equivalent 
system of only 0(3Nv) ordinary differential equations. Note that this reduced dual variable system 
is smaller than the primitive systems of either of the first two approaches. 

First, we briefly recall an efficient method for constructing tessellations of mutually orthogonal 
Delaunay/Voronoi covolumes (dismissed as a rather routine task by MacNeal12). Next we 
describe the particular form of the incompressible Navier-Stokes equations that will be used 
later to generate continuous time discrete space finite difference equations for the continuum 
flow problem. In later sections we outline an approach based on elementary network theory 
whereby the systems of equations involving primitive flow variables are transformed into 
equivalent systems of dual variables of considerably reduced dimensionality. This is followed by 
generalizations of the dual mesh approach to other tessellations. Finally, we present conclusions. 

AUTOMATIC GENERATION OF DUAL TESSELLATIONS 
A geometric construction which has proven useful for generating finite element discretizations 
of planar or solid regions into well-proportioned triangular or tetrahedral simplicies is the 
so-called Delaunay triangulation of a collection of points {pi}Nvi=1. The triangulation is most 
easily described when the points are confined to R2. Let the set Vi,i = 1,2,.'.., Nv,, be defined by: 

where || * || denotes Euclidean distance. Because Vi represents a region whose points are nearer 
to point Pi than to any other point, Vi is an open convex polygon (called a Voronoi polygon or 
tile) whose boundary edges are portions of the perpendicular bisectors of the lines joining pi to 
Pj when Vi and Vj are contiguous. The collection of Voronoi polygons forms a Voronoi tessellation 
of R2. In general, a vertex of a Voronoi polygon is shared by two other neighbouring polygons 
so that connecting the three generating points associated with such adjacent polygons forms a 
triangle, say Tk. The set of triangles is called the Delaunay triangulation which can also be shown 
to be a triangulation of the convex hull of the generating points. The Delaunay triangulation 
and dual Voronoi tessellation is illustrated in Figure 2 for a set of 13 points. What makes the 
triangulation popular for finite element analyses of structural problems is that (1) there are very 
efficient algorithms for computing it5,8, and (2) it produces triangles that are as close to equilateral 
as possible for a given set of points in a sense made precise in Reference 8. Although the dual 
Voronoi tessellation is a construct that can be realized by simply connecting circumcentres of 
adjacent Delaunay triangles, no use is made of this dual structure in the finite element method 
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when applied to structural problems. Such is not the case10,11,13,14 or here where, for 
incompressible flow discretizations, the two dual tessellations are closely linked. 

One of the primary advantages of basing flow discretizations on Delaunay/Voronoi covolumes 
is the capability of easily defining discrete partitions of the flow domain that can be locally 
graded or refined, and which are mutually orthogonal in the sense described above. Local grading 
permits efficient resolution and control of spatial discretization errors while orthogonal control 
volumes produce small discrete systems (especially when combined with the dual variable method 
of reducing system dimensionality) and improved treatment of flow boundary conditions. A 
main objective of the current work has been to link efficient control volume generation with 
covolume flow discretization and the dual variable method to produce an approach capable of 
delivering accurate approximations from computational models that are comparatively small in 
size. 

For the purpose of this paper we use a Delaunay triangulator described in detail in Reference 8. 
That mesh generator simultaneously integrates two tasks: generation of a distribution of 
well-placed nodes on all user-defined boundaries (both interior and exterior boundaries) and 
within the interior of the planar flow domain, and construction of a Delaunay triangulation of 
these nodes suitable for finite volume analysis applications. By ensuring that no interior points 
are placed inside circumcircles of each boundary edge, the mesh generator produces boundary 
conforming triangulations where boundaries include those of empty holes as well as closed or 
open interior boundary segments. (Closed internal boundaries differ from hole boundaries in 



INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 487 

that triangles are generated in their interiors.) This variety of internal boundaries permits mesh 
generation on multiply connected planar domains and it provides a useful means for controlling 
local element density when modelling boundary conditions or flow obstructions associated with 
any continuum flow problem. Mesh generation turns on Watson's algorithm17 for constructing 
a Delaunay triangulation of a set of points, followed by a post-processing application of Laplacian 
smoothing. Boundary and interior nodes are automatically inserted into the mesh by making 
use of an implicitly defined node separating function (see Reference 8 for complete details). 

Figure 3 contains dual tessellations generated by the mesh generato8 for a monolith automotive 
converter. The monolith was automatically subdivided as a separate subregion so that resistance 
terms could be added to momentum equations associated with triangles contained in this 
subregion. For this particular example, the mesh generator produced a total of 1122 triangles 
from 601 node points. All but 25 of these triangles are acute. The minimum angle in the 
triangulation is 32 degrees; the maximum angle is 107 degrees. For the purpose of covolume 
finite difference equation generation, it is desirable—though not essential—that triangles be 
acute which guarantees that they contain their circumcentres. We are not aware of any mesh 
generator that assures creation of entirely acute meshes. Extensive experience with the one used 
in this report indicates that the mesh generator seldom produces triangulations with more than 
3% obtuse triangles. 

Figure 4 contains the dual tessellations for two airfoils, illustrating the ability to achieve local 
mesh refinement and also to force such refinements to contain near right triangles in the boundary 
layers. Right triangles are desirable so that velocity components normal to sides of triangles are 
either normal or tangential to airfoil surfaces. If desired, the diagonals of the quadrilaterals 
adjacent to the airfoils could be deleted and a grid containing both triangles and quadrilaterals 
used for the discretization of the Navier-Stokes problem. 

THE INCOMPRESSIBLE FLOW PROBLEM 
We consider a bounded polygonal flow domain Ω with boundary ∂Ω. The continuous problem 
is to find a velocity vector q = (u(x,y,t), v(x, y, t))T and a (reduced) pressure p(x,y, t) which 
satisfy the continuity, or conservation of mass, equation 

and the vector-valued conservation of momentum equation: 

where x = (x, y), v is the kinematic viscosity and F(x, t) is a source term. We assume boundary 
conditions of the form 

and 

where ∂Ω = ∂Ω1 ∪ ∂Ω2 and ∂Ω1 ∩ ∂Ω2 = f. In the case of a pressure specified condition, (3), 
we also assume a velocity distribution outside of the boundary ∂Ω1 which is continuative in 
nature. This assumption allows us to invoke the condition that the velocity field is divergence 
free in a neighbourhood of ∂Ω1, a fact which is used in the deviation of (6) below. 
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Further, we assume initial conditions of the form: 

To put (2) in a form more suitable for discretization on a triangular grid, let n be a constant 
unit vector (to be chosen later) and take the dot product of (2) with n. For the viscous term, 
let ω be the scalar vorticity as given in Reference 15. Then, since Ñ·q = 0, it follows that: 

where (n,s) is a right-handed orthogonal coordinate system. The convective term becomes11: 

) 

where ∂/∂q denotes the directional derivative in the direction q and |q| is its Euclidean length. 
Equation (2) is thus replaced by the scalar equation: 

We now apply the complementary volume technique to (1) and (8). 

COVOLUME DISCRETIZATIONS OF THE FLOW PROBLEM 
In this section we describe three ways to derive finite difference approximations on 
Delaunay/Voronoi tessellations. In the first scheme, discrete conservation of mass is imposed 
on each triangle of the triangulation and in the second scheme conservation of mass holds on 
each Voronoi polygon. In each of these schemes the vector velocity field of the continuum 
problem is approximated by a scalar field of a single velocity component (components normal 
to triangle sides in the first scheme and components normal to polygon sides in the second 
scheme). However, our main objective here is to combine the two sets of difference equations 
to derive a third finite difference model which generates a discrete vector field by simultaneously 
determining normal and tangential components of flow. Before describing this implementation 
of the covolume method, we define several terms and give details of the first two schemes. With 
reference to Figure 5, let ni be pre-assigned unit vectors normal to the triangle edges (and 
therefore, tangent to the polygon edge and let si be unit vectors tangent to the triangle 
edge V0 Vi such that (ni si) forms a right-handed coordinate system. For ease of exposition, we 
assume that the Delaunay tessellation is such that all triangles are equilateral. In this case the 
midpoints Pi = (V0 + Vi)/2 and P'i = (Qi-1 +Qi)/2 coincide. We define normal and tangential 
velocity components: 

If the grid or mesh is not equilateral, then the midpoints Pi and P'i will be distinct, however, 
the line segments and are always perpendicular for Delaunay/Voronoi tessellations. 
We assume that Pi and P'i are sufficiently close so that μi(t) _ ni ·qlp'1 and vi(t) — si·q|p'i. 

Finally, we note that each Voronoi polygon corner Qi in Figure 5 is the circumcentre of a 
Delaunay triangle (for example, Q4 is the centre of the circle passing through V0 , V3 , V4). Such 
a circumcentre lies outside its associated Delaunay triangle if said triangle is obtuse. Such is the 
case for several circumcentres in Figure 2. However, the triangulation in Figure 2 is intended 
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for illustration purposes only; the points were rather arbitrarily positioned and the mesh was 
not subject to Laplacian smoothing. The mesh generator used in this report for practical flow 
problems produces triangulations that are very nearly acute. The maximum angle in the 
triangulation in Figure 5 is 107 degrees (the limiting case, a 90 degree triangle, has its circumcentre 
at the mid point of the hypotenuse). The methods that will be described in the sequel for deriving 
covolume finite difference equations apply to any triangle, acute or obtuse. What is important 
is that the Delaunay construction guarantees convex Voronoi polygons, polygon sides are 
perpendicular bisectors (or segments thereof) of triangle edges, and the mesh generator produces 
triangles that are acute or close to acute (that is, Pi

 __ P'i). 

Scheme 1: Conservation of mass on Delaunay triangles 
The continuity equation is integrated10,11 over each triangular control volume, (see Figure 6). 
The divergence theorem is applied and the normal velocity component, n·q is approximated 

by mid-edge normal velocities. The result is: 

where n is the outward normal vector to ni is the pre-assigned normal to the ith side of 
hi is the length of the ith side and ui(t) = ni·q|Pi. Note that (n·ni) = ± 1. 

If there are NT triangles in the triangulation of Ω, then there are NT such discrete continuity 
equations which we write as: 

A1D1u(t) = b1 (10) 

where u(t) is an Ns vector of normal velocity components with ith entry ui(t), and Ns is the 
number of triangle sides in the triangulation for which the velocity is unknown. The diagonal 
matrix D1 has its ith diagonal entry equal to ft,-. The vector b1 contains known boundary data 
(i.e., specified velocities in (4)). The NT x Ns matrix A1D1 is called the discrete divergence 
operator associated with the Delaunay tessellation. 
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The momentum equation (in the scalar form defined by (8)) is approximated at the midpoint 
of each side of the Ns edges of the triangulation bearing an unknown normal velocity component 
as follows: with reference to Figure 5 and starting with midside node P1 in Figure 5, we take 
n = n1 in (8) where n1 is the unit normal vector through P1 normal to and s = S1 the unit 
tangent vector. Then we define the following approximations: 
I. Temporal term: 

II. Viscous term: 

As in Reference 13 we next note that we can approximate ω(V0) in (12) for example by integrating 
over the Voronoi tile Ωk with centre V0 in Figure 5 and Figure 6. Applying Green's theorem we 
obtain: 

where s is the unit tangent vector along ∂Ωk traversing ∂Ωk in the counterclockwise direction, 
ni is the appropriate pre-assigned unit vector normal to a triangle side which is also a unit tangent 
vector for the ith side of the polygon Ωk and h'i is the length of the ith side of the polygon Ωk . 
Note that s·ni = ±1 . From (13) we have: 

which is then substituted into (12). 

III. Convective term 
The convective term can be handled in a variety of ways11. Here, we choose the upwind 

scheme11, i.e. 

where Q' and R' denote points of intersection of the line through P1 in the direction of q(P1) 
with the boundaries of the two triangles sharing side (see Figure 7). The velocity vectors 
q(Q') and q(R') are approximated by linear interpolation of the three midside velocity vectors11. 
Note that the convective term in (15) is quadratic in the velocity components, ui(t) and vi(t). 
IV. Pressure term 

where pi(t) approximates the pressure at circumcentre Qi. 



INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 491 

There is one continuous time, discrete space momentum equation for each of the Ns sides of 
the triangulation. This system of ordinary differential equations we write as: 

where u(t) and v(t) are respectively Ns-dimensional vectors of normal and tangential flows 
centred at the midpoints of triangle sides, p1(t)is the NT-dimensional vector of unknown pressures 
centred at triangle circumcentres and c1 contains known boundary data. The diagonal matrix 
D2 has ith diagonal entry equal to 1/h'i. Note that D2AT1 is the discrete gradient operator and 
that AT1 is the transpose of A1 in (10). Equations (10) and (17) constitute a system of NT + Ns 
differential/algebraic equations (a so-called DAE) in NT + 2NS unknowns (P1(t),u(t)v(t)). 
Scaling the normal velocity components u(t) by D1 and the tangential velocity components by 
D-12 and defining U(t) = D1u(t), V(t) = D-12v(t). we write this system as follows: 

Scheme 1 has been implemented10,11 where the time derivatives were approximated by the 
backward Euler method, the tangential velocities V(t) were determined using an interpolation 
of normal components10, and in the convection term V(t) was time lagged. The interpolation 
scheme for the tangential velocities has the potential to introduce temporal instabilities 
into the calculation. This provides motivation for consideration of the third scheme presented 
below which avoids this interpolation. We note that for regular triangulations (i.e., all triangles 
have identical circum radii) Scheme 1 exhibits a second order asymptotic spatial convergence 
rate. For non-regular triangulations, the convergence rate slips to first order. 

As an illustration of the utility of covolume methods on unstructured grids, Figure 8 contains 
a vector field determined by Scheme 1 for flow through a monolithic automotive converter using 
the dual tessellations in Figure 3. For this problem we assumed boundary conditions of zero 
normal and tangential velocity components across and along impervious walls, u(x, y, t) = constant, 
v(x, y, t) = 0 at the inlet of the converter, and p(x, y, t) = constant at the outlet of the converter. 



492 J. C. CAVENDISH ET AL. 

Scheme 2: Conservation of mass on Voronoi tiles 
The second approach to deriving finite difference equations by the covolume method is to 

reverse the roles played by Delaunay triangles and Voronoi polygons. That is, the continuity 
equation is now integrated over each polygonal Voronoi tile, Ωk (see Figure 6.). The divergence 
theorem is applied and the normal velocity component n·q is approximated by midside normal 
velocities which are in fact tangential velocities along triangle sides: 

where n is the outward normal vector to ∂Ωk, si is the prescribed unit tangent vector to the ith 
side (that is, the vector normal to and vi(t) = si·q|pi. Again, n·si = ±1. 

If there are Nv triangle vertices in the Delaunay triangulation, there are Nv discrete continuity 
equations in (19), one for each Voronoi polygon, which we write as: 

where v(t) is an Ns-dimensional vector with ith entry vi(t) and Ns is the number of triangle 
sides in the triangulation for which the tangential velocity is unknown. The Ns x Ns diagonal 
matrix D-12 has its ith diagonal entry equal to h'i. The vector b2 contains known boundary data 
(i.e., specified tangential velocities in (4)) and the Nv x Ns matrix A2D-12 is also called a discrete 
divergence operator associated with the Voronoi tessellation. 

In this approach the scalar momentum equation (8) is approximated at the mid-point of each 
of the Ns-edges of the triangulation bearing an unknown tangential velocity component. We do 
this by reversing the roles played by n1 and s1: in (8) taking n = s l ,a unit vector through P1 
and normal to and s = n1, a unit tangent vector to each term in (8) is approximated 
in turn as: 

I. Temporal term 

II. Viscous term 

whereas previously we can approximate ω(Q2) in (22) by integrating 03 over a Delaunay triangle, 
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say Ωk in Figure 6, and again apply Green's thereom to obtain: 

where s is the unit clockwise tangent Vector along j, si is the pre-assigned unit tangent vector 
which is also a unit normal vector for the ith side of Ωk and hi is the length of the ith side of 
Delaunay triangle j. Again, s·s, = ±1. From (23) we have 

which is then substituted into (22). 

III. Convective term 
The convective term is handled using an upwind scheme for polygonal control volumes 

analogous to the upwind scheme11 for triangular control volumes. With reference to Figure 7, 

where Q' and R' denote points of intersection of the line through P1 and in the direction of 
q(P1) with the boundaries of the two polygons sharing side . The velocity vectors q(Q') 
and q(R') are approximated11 by a linear interpolation of the midside velocity vectors. Note 
that (25) is quadratic in the velocity components, ui(t) and vi(t). 
IV. Pressure term 

where pi(t) approximates pressure at the triangle vertex, Vi in Figure 5. 
There is one continuous time-discrete space momentum equation for each of the Ns sides of 

the triangulation. This system of ordinary differential equations we write as: 

where p2(t) is the N-dimensional vector of unknown pressures located at triangle vertices and 
c2 contains known boundary data. Note that D-11 AT2 is a discrete gradient operator and that 
AT2 is the transpose of A2 in (20). Equations (20) and (27) constitute a system of Nv + Ns 
differential/algebraic equations in Nv + 2NS unknowns (p2(t);u(t),v(t))- We write this system as: 

In order to integrate (28), the velocity components U(t) need to be determined as some 
function of the velocity components V(t). We follow the idea10,11 and, with reference to 
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Figure 6, we approximate the velocity within Ωk by: 

(Weights other than 1/6 could be used if Ωk were not a regular hexagon; see Reference 11 for the 
triangle case.) The components ui are now determined so that: 

This leads to the strictly diagonally dominant system: 

where δij is the Kronecker delta. The system can be solved uniquely for the u-components as 
functions of the v-components. Using this approximation in (28) reduces (28) to a DAE in the 
unknowns V(t) and p2(t). 

Scheme 3: Combination of Schemes 1 and 2 
Schemes 1 and 2 as presented above result in fewer equations than unknowns due to the fact 

that the convection term involves the velocity vector while only one component of the vector 
momentum equation has been considered. This deficiency is handled for Scheme 1 by using an 
interpolation formula10,11,13 to approximate tangential velocity components in terms of the 
normal velocity components. A similar interpolation scheme was given above for Scheme 2. We 
now present an alternative which avoids the need to make such ad hoc approximations. We 
simply combine (18) and (28). This result is (NT + Nv + 2NS) differential/algebraic equations 
in a like number of unknowns. These equations can be written as: 

where W(t) = (U(t),V(t))T, g = (gl,g2)T, 

P(t) = (Pi(p1(t)P2(t))T, c = (c1,c2)T, and b = (bl
 , b2)T. 

Note that the coupling between U(t) and V(t) is through the discrete convection term g and 
the boundary conditions. These differential/algebraic equations could now be solved using a 
DAE solver or by discretizing the time derivatives and solving the resulting non-linear equations. 
Alternatively, as is commonly done, the non-linear convection terms can be linearized, say by 
time-lagging the convection coefficients and the resulting linear system solved. In the next section 
the dual variable method is described which economizes on the solution of systems of the form 
(32)-(33). 
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REDUCING THE PRIMITIVE SYSTEM 
Many discretizations of the incompressible Navier-Stokes equations lead to a system of the 
generic form (32-33). In fact, this is true for Schemes 1 and 2 themselves. The dual variable 
method1 introduces a set of variables (called dual variables) which transforms systems of the 
generic form (32-33) into an equivalent system of much lower dimensionality. We outline the 
steps of the method below: 

Step 1. At any value of time, t, a solution to the underdetermined (NT + Nv) x 2NS system 
(32) must be of the form W(t) = WP + WH(t) where WP is a time independent particular solution 
of (32), and WH(t) is a solution of the homogeneous system AWH(t) = 0. The first step, then is 
to find a particular solution to (32). 

Step 2. Since AWH(t) = 0, WH(t) is a member of the null space of the matrix A. A basis for 
the null space of A is a set of linearly independent 2Ns-dimensional vectors {C1,C2 ,. . . ,CR} 
all of which satisfy ACi = 0. Any solution to the homogeneous system can be written as a linear 
combination of the C'is. Hence, in this step we find a basis for the null space of A and form the 
2NS x R matrix C, with Ci as its ith column. Then, 

and 

for some yet to be determined R x 1 vector X(t). The value of R will be determined in the next 
section. 

Step 3. Substitute WP + WH(t) into (33) to produce: 

Step 4. Multiply (36) by CT and use (34) to obtain the R x R system: 

The matrix transformation in (37) is called the dual variable transformation and (37) itself is 
called the R x R dual variable system. Note that the pressures have been eliminated. 

Step 5. Solve (37) for X(t) using any ordinary differential equation integrator, recover the 
velocities W(t) using (35), and recover pressures p(t) by using (36). 

The dual variable method then involves two major steps: (a) finding a particular solution to 
(32) and (b) finding a basis for the null space of A. Both of these tasks can be accomplished by 
using network theoretic properties of the Delaunay/Voronoi meshes. This will be discussed in 
the next section. However, we remark here that for Scheme 3 the dimension of the dual variable 
system (37) is of the order 0(3Nv). Hence, we have replaced a system of differential/algebraic 
equations (32-33) involving* 0(9Nv) primitive velocity and pressure unknowns by a system of 
differential equations that is 3 times smaller involving 0(3Nv) dual variables. 

Although it is difficult to give a purely physical interpretation to the dual variables, X(r), they 
are best thought of as circulations about each of the Nv triangle vertices and NT polygon vertices 
in the tessellations. A circulation about a vertex is determined from a line integral of the flow 
along the boundary of the dual tile containing that vertex. An equivalent electric network 

* It is known7 that Ns = 0(3Nv) and NT = 0(2Nv). 
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interpretation is offered by considering the dual variables to be mesh currents around the boundary 
of each Delaunay triangle or Voronoi tile. See, for example p. 465 of Reference 4. 

NETWORK THEORY AND THE DUAL VARIABLE METHOD 
Implementation of the dual variable method requires (i) construction of a particular solution of 
the discrete continuity equation, and (ii) construction of a basis for the null space of the discrete 
divergence operator. Both these requirements can be met using standard algorithms for network 
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theory. A network N* is a set, S, of N nodes and set, T*, of L links. These links are of two 
types. Interior links connecting two nodes of S and boundary links connecting a node with an 
ideal node at infinity. Figure 9 contains three networks associated with the three schemes presented 
earlier. For Scheme 1, the nodes are triangle circumcentres and the links are the directed (according 
to the choice of ni) line segments connecting the circumcentres. For Scheme 2, the nodes are 
centres of the Voronoi polygons and the links are the directed (according to the choice of Si) 
line segments connecting these centres. Note that we do not include any flow path along which 
a velocity is known; however, there are boundary links to pressure specified boundary (or 
pendant) nodes. Finally, we observe that the network for Scheme 3 is simply a catenation of the 
networks for Schemes 1 and 2. We now consider the above two requirements for a general network. 

Particular solutions 
The particular solution of a discrete continuity equation is obtained using the notion of a 

spanning tree of the associated network1. A spanning tree is a path (chain of links) in the network 
which contains no cycles (loops) and which connects all nodes. There are algorithms and software 
available to determine a tree for a given network. Figure 9 contains sample trees for the three 
networks given. 

Next, recall that there is one discrete continuity equation for each node (excluding pendant 
nodes). The velocities on the links of N* which are not in the tree are set to zero. Also, the 
velocities on boundary links are set to zero. Beginning with the outermost extremities of the 
network, one proceeds through the nodes of the tree so that as each node is encountered, all 
but one velocity component associated with links incident on that node has been determined. 
The continuity equation for that node is used to determine its remaining velocity, taking into 
account any specified boundary velocities. 

In essence, the tree establishes an order for the nodes (equations) and links (variables) so that 
the discrete continuity equations form a triangular system. For the spanning tree in Figure 9 
(Scheme 1) the nodes are re-ordered according to the tree structure as (1, 2, 4, 3, 6, 5, 13, 12, 
11, 10, 9, 8, 7). The unknown velocities are re-ordered as (1, 2, 6, 4, 5, 11, 8, 9, 10, 12, 13, 14). 
With this new ordering the 13 continuity equations form a lower triangular system which is 
easily solved. Hence, the construction of a particular solution of the discrete continuity equation 
is an easy task given a spanning tree. This same tree can be used, knowing the velocities, to 
recover the pressures (or more accurately pressure drops) from 

where d(t) is known [cf. (33)]. 

Null space 
The matrices A1 in (18), A2 in (28) and A in (32) are incidence matrices of the networks 

associated with the respective schemes (see Figure 9). The matrix E = (eij) is an incidence matrix 
of the directed network N* if 
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The incidence matrix for the second network in Figure 9 is the 3 x 6 matrix 

It is known3 that if N* has at least one boundary link then the incidence matrix E is of 
rank N, the number of nodes in N*. Hence the dimension of the null space of E is L — N , the 
number of links minus the number of nodes. To find a basis for this null space again we turn 
to network theory and the notion of a fundamental matrix, C, the columns of which are cycle 
vectors. 

A cycle is a chain of links whose extremities coincide and is such that any other node is 
encountered at most one during a traverse of the chain. A cycle vector ck = (clk,...,cLk)T is 
defined by: 

For the second network in Figure 9 the vector C1 ≡ (1,1, —1,0,0,0)T is a cycle vector. 
One can verify that Eck = 0; that is, ck is in the null space of E. If there are L° interior links 

in the network then it is known3 that there are L° — N + 1 linearly independent cycle vectors. 
With regard to boundary links, there are L — L° — 1 chains such that the first and last links 

are the kth and (k + l)st boundary links. One can define pseudo cycle vectors for such chains 
in a manner similar to the cjk above. For example, the second network in Figure 9, the vector 
c2 = (0,0,1,0, — 1,1)T is a pseudo-cycle vector. It is known that the totality of L — N cycle 
vectors and pseudo-cycle vectors thus constructed are linearly independent and span the null 
space of the incidence matrix. 

Hence the matrix C needed in the dual variable method is simply the L x (L — N) matrix of 
cycle (and pseudo-cycle) vectors. For the network in Figure 9 (Scheme 2), the fundamental matrix 
is: 

The dual variable system for Scheme 2 is 3 x 3 while the primitive system is 9 x 9. In general 
let there be NT triangles, Ns triangle sides and, Nv triangle vertices. Then for each of the three 
schemes the relative size of the dual variable and primitive systems are given in Table 1. 

Note that the network for Scheme 3 has two disjoint components or sub-networks which are 
in fact the networks for Schemes 1 and 2. As such the fundamental matrix C for Scheme 3 is a 
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L = velocity components 
N = pressures 
L + N = size of 

primitive systems 
L — N = size of 

dual variable system 
Reduction factor 

Table 1 Reduction factors 

Scheme 1 

NT 

Ns + NT = 0(5NV) 

Ns-NT = 0(Nv) 
5 

Scheme 2 

Nv 

Ns + Nv = 0(4Nv) 

N s - N v = 0(2Nv) 
2 

Scheme 3 

2NS 
NT + NV 

2NS + NT + Nv = 0(9Nv) 

2NS -NT -NV = 0(3Nv) 
3 

block diagonal matrix 

where C1 and C2 are the fundamental matrices for Schemes 1 and 2 respectively. 

GENERALIZATIONS 
The three covolume schemes presented, and in particular the (combined) Scheme 3, can be 
generalized to other types of dual tessellations. A very general approach to the construction of 
a tessellation of a flow domain is given elsewhere16. Examination of the approach outlined above 
shows that the key ingredient in the present approach is the duality of the tessellations in the 
sense that the edge segments of the first tessellation are orthogonal to the edge segments of the 
second tessellation. 

Once this orthogonality is established14, the covolume discretization of the Navier-Stokes 
problem has three main constituents: (1) the approximation of the divergence, (2) the 
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approximation of the scalar vorticity, and (3) the approximation of the convective term. The 
first and second approximations reduce to boundary integrals (cf. (9) and (13)) which have 
straightforward extensions to other shaped tiles. The third (cf. (15)) can also be extended to 
other shaped tiles assuming that the appropriate interpolation schemes can be constructed. 

We mentioned here two specific generalizations of the notion of dual tessellations; (1) the 
staggered MAC rectangular tessellations and (2) a combination of rectangular and triangular 
tiles. The first is illustrated in Figure 10 and the second in Figure 11. We assume in both 
illustrations that consistent velocities (normal and tangential components) have been specified 
on the entire boundary so as to simplify the presentation. It is also possible to treat more 
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elaborate combinations of boundary conditions. Also, in these Figures normal and tangential 
refer to directions relative to the sides of triangles. 

CONCLUSIONS 
We presented10 an approach (called Scheme 1 here) that integrates three computational concepts 
into a single algorithm for modelling the two-dimensional incompressible Navier-Stokes 
equations: (1) automatic Delaunay mesh generation, (2) covolume finite difference equation 
generation, and (3) dual variable reduction of primitive systems. This covolume approach replaces 
the continuum problem involving a vector velocity field with a discrete problem involving only 
a single scalar velocity which is normal to triangle sides. Also presented10 was an interpolation 
scheme for deriving a posteriori approximations of flows tangent to triangle sides in order to 
produce a discrete vector-valued approximation of velocity. 

In this paper we have accomplished three principal objectives. First, we have shown that a 
simple role reversal of Delaunay triangle and Voronoi polygon in the covolume method for 
deriving difference equations produces an analogous discrete problem involving a single scalar 
component of velocity normal to polygon sides. This approach we call Scheme 2. Again, a 
complete discrete model of the continuous flow field results from the approximation of velocity 
components tangent to polygon sides. 

Second, we have shown that by combining Scheme 1 and Scheme 2 we can avoid the necessity 
of making any a posteriori estimates of velocity components and thereby produce a discrete 
approximation involving coupled, mutually orthogonal velocity components associated with 
midpoints of triangle or polygon sides (Scheme 3). 

Third, we have shown that given the dual variable transformations for Scheme 1 and Scheme 2, 
it is a simple matter to construct a complete dual variable reduction for the primitive system 
arising from Scheme 3. 

Finally, we have shown that the dual variable method applied to any one of the three covolume 
schemes leads to a significant reduction in the size of the primitive variable system (Table 1). 
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